Seaborn is a powerful Python data visualization library built on top of Matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. With its ability to work seamlessly with Pandas DataFrames and its easy-to-use functions, Seaborn makes complex plots simpler and more elegant.
This comprehensive guide covers all core functionalities of Seaborn, including:
pip install seaborn
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
tips = sns.load_dataset("tips")
print(tips.head())
df = pd.read_csv('your_dataset.csv')
print(df.head())
sns.set_style("darkgrid")
sns.set_context("notebook") # options: paper, talk, poster
sns.histplot(tips["total_bill"], bins=20, kde=False)
plt.title("Histogram of Total Bill")
plt.show()
sns.kdeplot(tips["total_bill"], shade=True)
plt.title("KDE Plot")
plt.show()
sns.histplot(tips["total_bill"], kde=True)
plt.title("Histogram + KDE")
plt.show()
sns.rugplot(tips["total_bill"])
plt.title("Rug Plot")
plt.show()
sns.boxplot(x="day", y="total_bill", data=tips)
plt.title("Box Plot of Total Bill by Day")
plt.show()
sns.violinplot(x="day", y="total_bill", data=tips)
plt.title("Violin Plot")
plt.show()
sns.swarmplot(x="day", y="total_bill", data=tips)
plt.title("Swarm Plot")
plt.show()
sns.stripplot(x="day", y="total_bill", data=tips, jitter=True)
plt.title("Strip Plot")
plt.show()
sns.countplot(x="day", data=tips)
plt.title("Count of Records per Day")
plt.show()
sns.barplot(x="day", y="tip", data=tips)
plt.title("Bar Plot of Tips by Day")
plt.show()
sns.pointplot(x="time", y="total_bill", data=tips)
plt.title("Point Plot")
plt.show()
sns.boxenplot(x="day", y="total_bill", data=tips)
plt.title("Boxen Plot")
plt.show()
corr = tips.corr()
sns.heatmap(corr, annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap")
plt.show()
sns.clustermap(corr, annot=True, cmap="viridis")
plt.title("Cluster Map")
plt.show()
sns.scatterplot(x="total_bill", y="tip", data=tips)
plt.title("Scatter Plot of Bill vs Tip")
plt.show()
sns.lineplot(x="size", y="tip", data=tips)
plt.title("Line Plot of Tip by Size")
plt.show()
sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips)
plt.title("Relational Plot with Hue")
plt.show()
sns.lmplot(x="total_bill", y="tip", data=tips)
sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips)
sns.lmplot(x="total_bill", y="tip", data=tips, logistic=True)
sns.pairplot(tips)
sns.pairplot(tips, hue="sex")
sns.jointplot(x="total_bill", y="tip", data=tips, kind="hex")
g = sns.FacetGrid(tips, col="sex", row="time")
g.map_dataframe(sns.scatterplot, x="total_bill", y="tip")
sns.catplot(x="day", y="tip", hue="sex", kind="box", data=tips)
sns.set_palette("deep")
palette = sns.color_palette("husl", 4)
sns.boxplot(x="day", y="total_bill", data=tips, palette=palette)
print(sns.palettes.SEABORN_PALETTES.keys())
ax = sns.boxplot(x="day", y="total_bill", data=tips)
ax.set_title("Customized Box Plot")
ax.set_xlabel("Day of Week")
ax.set_ylabel("Total Bill ($)")
sns.histplot(tips["total_bill"])
plt.title("Histogram")
plt.savefig("histogram.png")
mpg = sns.load_dataset("mpg")
sns.scatterplot(x="horsepower", y="mpg", hue="origin", data=mpg)
plt.title("Horsepower vs MPG by Origin")
plt.show()
sns.boxplot(x="cylinders", y="mpg", data=mpg)
plt.title("MPG by Number of Cylinders")
plt.show()
sns.pairplot(mpg[['mpg', 'horsepower', 'weight', 'acceleration', 'origin']], hue='origin')
Seaborn is a versatile and powerful library for creating statistical visualizations in Python. Built on top of Matplotlib, it simplifies complex plots, enhances aesthetics, and makes data storytelling more effective. Whether you're plotting distributions, relationships, or multi-dimensional datasets, Seaborn equips you with the tools to create professional-grade visualizations with minimal effort.
By mastering Seaborn's APIs and combining them with your understanding of Matplotlib, you can tailor your visualizations to communicate your data insights with clarity, beauty, and precision.
Python is commonly used for developing websites and software, task automation, data analysis, and data visualisation. Since it's relatively easy to learn, Python has been adopted by many non-programmers, such as accountants and scientists, for a variety of everyday tasks, like organising finances.
Learning Curve: Python is generally considered easier to learn for beginners due to its simplicity, while Java is more complex but provides a deeper understanding of how programming works.
The point is that Java is more complicated to learn than Python. It doesn't matter the order. You will have to do some things in Java that you don't in Python. The general programming skills you learn from using either language will transfer to another.
Read on for tips on how to maximize your learning. In general, it takes around two to six months to learn the fundamentals of Python. But you can learn enough to write your first short program in a matter of minutes. Developing mastery of Python's vast array of libraries can take months or years.
6 Top Tips for Learning Python
The following is a step-by-step guide for beginners interested in learning Python using Windows.
Best YouTube Channels to Learn Python
Write your first Python programStart by writing a simple Python program, such as a classic "Hello, World!" script. This process will help you understand the syntax and structure of Python code.
The average salary for Python Developer is ₹5,55,000 per year in the India. The average additional cash compensation for a Python Developer is within a range from ₹3,000 - ₹1,20,000.
Copyrights © 2024 letsupdateskills All rights reserved