Pivot tables are one of the most powerful and flexible features in the pandas library. A pivot table allows you to transform and summarize data in a tabular format. It is widely used in data analysis and business intelligence for its ability to slice, dice, filter, and aggregate large datasets with minimal code. In pandas, the pivot table functionality is provided through the pivot_table() method.
This guide covers everything you need to know about working with pivot tables in Python using pandas. We will cover pivot basics, multi-level aggregation, handling missing data, margins, reshaping, and real-world applications of pivot tables in analytics.
A pivot table is a data summarization tool that allows you to aggregate and reshape data. In pandas, a pivot table allows you to specify:
import pandas as pd
data = {
'Department': ['HR', 'HR', 'IT', 'IT', 'Finance', 'Finance', 'HR', 'IT'],
'Employee': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry'],
'Salary': [50000, 55000, 60000, 65000, 70000, 75000, 52000, 62000],
'Gender': ['F', 'M', 'M', 'M', 'F', 'M', 'F', 'M']
}
df = pd.DataFrame(data)
print(df)
We can start with a simple pivot table that shows the average salary per department.
pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc='mean')
print(pivot)
Sometimes, you want to calculate more than one metric for each group. You can pass a list of aggregation functions to aggfunc.
pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc=['mean', 'min', 'max', 'count'])
print(pivot)
pivot.columns = ['Average Salary', 'Min Salary', 'Max Salary', 'Count']
print(pivot.reset_index())
You can group by both rows and columns using the columns argument.
pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean')
print(pivot)
This shows the average salary by department and gender.
You can use multiple fields as indices by passing a list to index.
pivot = pd.pivot_table(df, index=['Department', 'Gender'], values='Salary', aggfunc='mean')
print(pivot)
print(pivot.loc[('IT', 'M')])
pivot = pd.pivot_table(df, index='Department', columns=['Gender'], values='Salary', aggfunc=['mean', 'count'])
print(pivot)
You can use margins=True to get row and column totals.
pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean', margins=True)
print(pivot)
pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean', margins=True, margins_name='Total')
print(pivot)
pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean', fill_value=0)
print(pivot)
print(pivot.isnull())
If you're working with categoricals, ensure that unused categories appear in the pivot.
df['Department'] = df['Department'].astype('category')
df['Department'].cat.set_categories(['HR', 'IT', 'Finance', 'Legal'], inplace=True)
pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc='mean', fill_value=0)
print(pivot)
pivot_reset = pivot.reset_index()
print(pivot_reset)
pivot.columns = ['_'.join(col).strip() if isinstance(col, tuple) else col for col in pivot.columns.values]
print(pivot)
sales_data = {
'Region': ['East', 'West', 'East', 'North', 'South', 'West', 'South', 'East'],
'Product': ['A', 'B', 'A', 'C', 'A', 'B', 'C', 'B'],
'Revenue': [100, 200, 150, 300, 250, 220, 270, 180]
}
sales_df = pd.DataFrame(sales_data)
pivot = pd.pivot_table(sales_df, index='Region', columns='Product', values='Revenue', aggfunc='sum', fill_value=0)
print(pivot)
retention_df = pd.DataFrame({
'CustomerID': [1, 2, 3, 1, 2, 3, 1, 2],
'Month': ['Jan', 'Jan', 'Jan', 'Feb', 'Feb', 'Feb', 'Mar', 'Mar'],
'Purchased': [1, 1, 0, 1, 0, 0, 1, 1]
})
pivot = pd.pivot_table(retention_df, index='CustomerID', columns='Month', values='Purchased', aggfunc='max', fill_value=0)
print(pivot)
def salary_range(x):
return x.max() - x.min()
pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc=salary_range)
print(pivot)
There are two similar methods in pandas: pivot() and pivot_table().
simple_df = pd.DataFrame({
'ID': [1, 2, 3],
'Date': ['2024-01', '2024-02', '2024-01'],
'Value': [100, 200, 300]
})
pivoted = simple_df.pivot(index='ID', columns='Date', values='Value')
print(pivoted)
sales = pd.DataFrame({
'Date': pd.date_range(start='2024-01-01', periods=6, freq='M'),
'Revenue': [1000, 1500, 1200, 1300, 1800, 1700],
'Region': ['East', 'West', 'East', 'North', 'West', 'South']
})
pivot = pd.pivot_table(sales, index=sales['Date'].dt.year, columns=sales['Date'].dt.month, values='Revenue', aggfunc='sum')
print(pivot)
pivot.to_excel('pivot_output.xlsx')
pivot.to_csv('pivot_output.csv')
Pivot tables in pandas are incredibly useful for transforming and analyzing structured data. They enable you to quickly summarize datasets with just a few lines of code. Mastery of pivot_table() equips data professionals with the ability to perform deep analytical operations on any tabular dataset. With options like multiple aggregation functions, margins, and hierarchical indexes, pandas pivot tables serve as a robust alternative to Excel-based pivoting and are a must-have tool in a data analyst's toolkit.
Whether you're analyzing sales performance, aggregating financial reports, or tracking user behavior, pivot tables provide the flexibility and performance necessary for modern data analysis in Python.
Python is commonly used for developing websites and software, task automation, data analysis, and data visualisation. Since it's relatively easy to learn, Python has been adopted by many non-programmers, such as accountants and scientists, for a variety of everyday tasks, like organising finances.
Learning Curve: Python is generally considered easier to learn for beginners due to its simplicity, while Java is more complex but provides a deeper understanding of how programming works.
The point is that Java is more complicated to learn than Python. It doesn't matter the order. You will have to do some things in Java that you don't in Python. The general programming skills you learn from using either language will transfer to another.
Read on for tips on how to maximize your learning. In general, it takes around two to six months to learn the fundamentals of Python. But you can learn enough to write your first short program in a matter of minutes. Developing mastery of Python's vast array of libraries can take months or years.
6 Top Tips for Learning Python
The following is a step-by-step guide for beginners interested in learning Python using Windows.
Best YouTube Channels to Learn Python
Write your first Python programStart by writing a simple Python program, such as a classic "Hello, World!" script. This process will help you understand the syntax and structure of Python code.
The average salary for Python Developer is ₹5,55,000 per year in the India. The average additional cash compensation for a Python Developer is within a range from ₹3,000 - ₹1,20,000.
Copyrights © 2024 letsupdateskills All rights reserved