Python - Pivot Tables

Python - Pivot Tables

Pivot Tables in Python

Pivot tables are one of the most powerful and flexible features in the pandas library. A pivot table allows you to transform and summarize data in a tabular format. It is widely used in data analysis and business intelligence for its ability to slice, dice, filter, and aggregate large datasets with minimal code. In pandas, the pivot table functionality is provided through the pivot_table() method.

This guide covers everything you need to know about working with pivot tables in Python using pandas. We will cover pivot basics, multi-level aggregation, handling missing data, margins, reshaping, and real-world applications of pivot tables in analytics.

What is a Pivot Table?

A pivot table is a data summarization tool that allows you to aggregate and reshape data. In pandas, a pivot table allows you to specify:

  • The index: which column(s) to group by on the rows
  • The columns: which column(s) to group by on the columns
  • The values: which data to aggregate
  • The aggfunc: the aggregation function(s) to apply

Creating a Basic Pivot Table

Example Dataset

import pandas as pd

data = {
    'Department': ['HR', 'HR', 'IT', 'IT', 'Finance', 'Finance', 'HR', 'IT'],
    'Employee': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry'],
    'Salary': [50000, 55000, 60000, 65000, 70000, 75000, 52000, 62000],
    'Gender': ['F', 'M', 'M', 'M', 'F', 'M', 'F', 'M']
}

df = pd.DataFrame(data)
print(df)

Basic Pivot Table

We can start with a simple pivot table that shows the average salary per department.

pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc='mean')
print(pivot)

Using Multiple Aggregation Functions

Sometimes, you want to calculate more than one metric for each group. You can pass a list of aggregation functions to aggfunc.

pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc=['mean', 'min', 'max', 'count'])
print(pivot)

Renaming Columns After Multiple Aggregations

pivot.columns = ['Average Salary', 'Min Salary', 'Max Salary', 'Count']
print(pivot.reset_index())

Adding Columns in Pivot Table

You can group by both rows and columns using the columns argument.

pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean')
print(pivot)

Result Interpretation

This shows the average salary by department and gender.

Using Multiple Index Levels

You can use multiple fields as indices by passing a list to index.

pivot = pd.pivot_table(df, index=['Department', 'Gender'], values='Salary', aggfunc='mean')
print(pivot)

Accessing MultiIndex Rows

print(pivot.loc[('IT', 'M')])

Using Multiple Columns in Pivot Table

pivot = pd.pivot_table(df, index='Department', columns=['Gender'], values='Salary', aggfunc=['mean', 'count'])
print(pivot)

Margins and Grand Totals

You can use margins=True to get row and column totals.

pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean', margins=True)
print(pivot)

Change the Name of Totals Row and Column

pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean', margins=True, margins_name='Total')
print(pivot)

Handling Missing Data

Filling Missing Values with fill_value

pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean', fill_value=0)
print(pivot)

Detecting NaNs in Pivot

print(pivot.isnull())

Working with Categorical Data

If you're working with categoricals, ensure that unused categories appear in the pivot.

df['Department'] = df['Department'].astype('category')
df['Department'].cat.set_categories(['HR', 'IT', 'Finance', 'Legal'], inplace=True)

pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc='mean', fill_value=0)
print(pivot)

Reshaping Pivot Tables

Resetting Index

pivot_reset = pivot.reset_index()
print(pivot_reset)

Flattening MultiIndex Columns

pivot.columns = ['_'.join(col).strip() if isinstance(col, tuple) else col for col in pivot.columns.values]
print(pivot)

Real-World Use Cases

Sales Data Analysis

sales_data = {
    'Region': ['East', 'West', 'East', 'North', 'South', 'West', 'South', 'East'],
    'Product': ['A', 'B', 'A', 'C', 'A', 'B', 'C', 'B'],
    'Revenue': [100, 200, 150, 300, 250, 220, 270, 180]
}

sales_df = pd.DataFrame(sales_data)

pivot = pd.pivot_table(sales_df, index='Region', columns='Product', values='Revenue', aggfunc='sum', fill_value=0)
print(pivot)

Customer Retention

retention_df = pd.DataFrame({
    'CustomerID': [1, 2, 3, 1, 2, 3, 1, 2],
    'Month': ['Jan', 'Jan', 'Jan', 'Feb', 'Feb', 'Feb', 'Mar', 'Mar'],
    'Purchased': [1, 1, 0, 1, 0, 0, 1, 1]
})

pivot = pd.pivot_table(retention_df, index='CustomerID', columns='Month', values='Purchased', aggfunc='max', fill_value=0)
print(pivot)

Advanced Aggregation with Custom Functions

def salary_range(x):
    return x.max() - x.min()

pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc=salary_range)
print(pivot)

Comparing pivot() and pivot_table()

There are two similar methods in pandas: pivot() and pivot_table().

  • pivot() does not allow aggregation. It is used for reshaping data and assumes there are no duplicate index/column combinations.
  • pivot_table() allows aggregation via aggfunc.

Using pivot()

simple_df = pd.DataFrame({
    'ID': [1, 2, 3],
    'Date': ['2024-01', '2024-02', '2024-01'],
    'Value': [100, 200, 300]
})

pivoted = simple_df.pivot(index='ID', columns='Date', values='Value')
print(pivoted)

Using Pivot Tables with Datetime

sales = pd.DataFrame({
    'Date': pd.date_range(start='2024-01-01', periods=6, freq='M'),
    'Revenue': [1000, 1500, 1200, 1300, 1800, 1700],
    'Region': ['East', 'West', 'East', 'North', 'West', 'South']
})

pivot = pd.pivot_table(sales, index=sales['Date'].dt.year, columns=sales['Date'].dt.month, values='Revenue', aggfunc='sum')
print(pivot)

Tips for Working with Pivot Tables

  • Always use fill_value when missing values might be present.
  • Use margins to get subtotals and grand totals.
  • Flatten multi-index columns for easier data export.
  • Use reset_index() to convert the pivot back into a DataFrame.

Exporting Pivot Tables

Export to Excel

pivot.to_excel('pivot_output.xlsx')

Export to CSV

pivot.to_csv('pivot_output.csv')

Pivot tables in pandas are incredibly useful for transforming and analyzing structured data. They enable you to quickly summarize datasets with just a few lines of code. Mastery of pivot_table() equips data professionals with the ability to perform deep analytical operations on any tabular dataset. With options like multiple aggregation functions, margins, and hierarchical indexes, pandas pivot tables serve as a robust alternative to Excel-based pivoting and are a must-have tool in a data analyst's toolkit.

Whether you're analyzing sales performance, aggregating financial reports, or tracking user behavior, pivot tables provide the flexibility and performance necessary for modern data analysis in Python.

Beginner 5 Hours
Python - Pivot Tables

Pivot Tables in Python

Pivot tables are one of the most powerful and flexible features in the pandas library. A pivot table allows you to transform and summarize data in a tabular format. It is widely used in data analysis and business intelligence for its ability to slice, dice, filter, and aggregate large datasets with minimal code. In pandas, the pivot table functionality is provided through the pivot_table() method.

This guide covers everything you need to know about working with pivot tables in Python using pandas. We will cover pivot basics, multi-level aggregation, handling missing data, margins, reshaping, and real-world applications of pivot tables in analytics.

What is a Pivot Table?

A pivot table is a data summarization tool that allows you to aggregate and reshape data. In pandas, a pivot table allows you to specify:

  • The index: which column(s) to group by on the rows
  • The columns: which column(s) to group by on the columns
  • The values: which data to aggregate
  • The aggfunc: the aggregation function(s) to apply

Creating a Basic Pivot Table

Example Dataset

import pandas as pd data = { 'Department': ['HR', 'HR', 'IT', 'IT', 'Finance', 'Finance', 'HR', 'IT'], 'Employee': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry'], 'Salary': [50000, 55000, 60000, 65000, 70000, 75000, 52000, 62000], 'Gender': ['F', 'M', 'M', 'M', 'F', 'M', 'F', 'M'] } df = pd.DataFrame(data) print(df)

Basic Pivot Table

We can start with a simple pivot table that shows the average salary per department.

pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc='mean') print(pivot)

Using Multiple Aggregation Functions

Sometimes, you want to calculate more than one metric for each group. You can pass a list of aggregation functions to aggfunc.

pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc=['mean', 'min', 'max', 'count']) print(pivot)

Renaming Columns After Multiple Aggregations

pivot.columns = ['Average Salary', 'Min Salary', 'Max Salary', 'Count'] print(pivot.reset_index())

Adding Columns in Pivot Table

You can group by both rows and columns using the columns argument.

pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean') print(pivot)

Result Interpretation

This shows the average salary by department and gender.

Using Multiple Index Levels

You can use multiple fields as indices by passing a list to index.

pivot = pd.pivot_table(df, index=['Department', 'Gender'], values='Salary', aggfunc='mean') print(pivot)

Accessing MultiIndex Rows

print(pivot.loc[('IT', 'M')])

Using Multiple Columns in Pivot Table

pivot = pd.pivot_table(df, index='Department', columns=['Gender'], values='Salary', aggfunc=['mean', 'count']) print(pivot)

Margins and Grand Totals

You can use margins=True to get row and column totals.

pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean', margins=True) print(pivot)

Change the Name of Totals Row and Column

pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean', margins=True, margins_name='Total') print(pivot)

Handling Missing Data

Filling Missing Values with fill_value

pivot = pd.pivot_table(df, index='Department', columns='Gender', values='Salary', aggfunc='mean', fill_value=0) print(pivot)

Detecting NaNs in Pivot

print(pivot.isnull())

Working with Categorical Data

If you're working with categoricals, ensure that unused categories appear in the pivot.

df['Department'] = df['Department'].astype('category') df['Department'].cat.set_categories(['HR', 'IT', 'Finance', 'Legal'], inplace=True) pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc='mean', fill_value=0) print(pivot)

Reshaping Pivot Tables

Resetting Index

pivot_reset = pivot.reset_index() print(pivot_reset)

Flattening MultiIndex Columns

pivot.columns = ['_'.join(col).strip() if isinstance(col, tuple) else col for col in pivot.columns.values] print(pivot)

Real-World Use Cases

Sales Data Analysis

sales_data = { 'Region': ['East', 'West', 'East', 'North', 'South', 'West', 'South', 'East'], 'Product': ['A', 'B', 'A', 'C', 'A', 'B', 'C', 'B'], 'Revenue': [100, 200, 150, 300, 250, 220, 270, 180] } sales_df = pd.DataFrame(sales_data) pivot = pd.pivot_table(sales_df, index='Region', columns='Product', values='Revenue', aggfunc='sum', fill_value=0) print(pivot)

Customer Retention

retention_df = pd.DataFrame({ 'CustomerID': [1, 2, 3, 1, 2, 3, 1, 2], 'Month': ['Jan', 'Jan', 'Jan', 'Feb', 'Feb', 'Feb', 'Mar', 'Mar'], 'Purchased': [1, 1, 0, 1, 0, 0, 1, 1] }) pivot = pd.pivot_table(retention_df, index='CustomerID', columns='Month', values='Purchased', aggfunc='max', fill_value=0) print(pivot)

Advanced Aggregation with Custom Functions

def salary_range(x): return x.max() - x.min() pivot = pd.pivot_table(df, index='Department', values='Salary', aggfunc=salary_range) print(pivot)

Comparing pivot() and pivot_table()

There are two similar methods in pandas: pivot() and pivot_table().

  • pivot() does not allow aggregation. It is used for reshaping data and assumes there are no duplicate index/column combinations.
  • pivot_table() allows aggregation via aggfunc.

Using pivot()

simple_df = pd.DataFrame({ 'ID': [1, 2, 3], 'Date': ['2024-01', '2024-02', '2024-01'], 'Value': [100, 200, 300] }) pivoted = simple_df.pivot(index='ID', columns='Date', values='Value') print(pivoted)

Using Pivot Tables with Datetime

sales = pd.DataFrame({ 'Date': pd.date_range(start='2024-01-01', periods=6, freq='M'), 'Revenue': [1000, 1500, 1200, 1300, 1800, 1700], 'Region': ['East', 'West', 'East', 'North', 'West', 'South'] }) pivot = pd.pivot_table(sales, index=sales['Date'].dt.year, columns=sales['Date'].dt.month, values='Revenue', aggfunc='sum') print(pivot)

Tips for Working with Pivot Tables

  • Always use fill_value when missing values might be present.
  • Use margins to get subtotals and grand totals.
  • Flatten multi-index columns for easier data export.
  • Use reset_index() to convert the pivot back into a DataFrame.

Exporting Pivot Tables

Export to Excel

pivot.to_excel('pivot_output.xlsx')

Export to CSV

pivot.to_csv('pivot_output.csv')

Pivot tables in pandas are incredibly useful for transforming and analyzing structured data. They enable you to quickly summarize datasets with just a few lines of code. Mastery of pivot_table() equips data professionals with the ability to perform deep analytical operations on any tabular dataset. With options like multiple aggregation functions, margins, and hierarchical indexes, pandas pivot tables serve as a robust alternative to Excel-based pivoting and are a must-have tool in a data analyst's toolkit.

Whether you're analyzing sales performance, aggregating financial reports, or tracking user behavior, pivot tables provide the flexibility and performance necessary for modern data analysis in Python.

Frequently Asked Questions for Python

Python is commonly used for developing websites and software, task automation, data analysis, and data visualisation. Since it's relatively easy to learn, Python has been adopted by many non-programmers, such as accountants and scientists, for a variety of everyday tasks, like organising finances.


Python's syntax is a lot closer to English and so it is easier to read and write, making it the simplest type of code to learn how to write and develop with. The readability of C++ code is weak in comparison and it is known as being a language that is a lot harder to get to grips with.

Learning Curve: Python is generally considered easier to learn for beginners due to its simplicity, while Java is more complex but provides a deeper understanding of how programming works. Performance: Java has a higher performance than Python due to its static typing and optimization by the Java Virtual Machine (JVM).

Python can be considered beginner-friendly, as it is a programming language that prioritizes readability, making it easier to understand and use. Its syntax has similarities with the English language, making it easy for novice programmers to leap into the world of development.

To start coding in Python, you need to install Python and set up your development environment. You can download Python from the official website, use Anaconda Python, or start with DataLab to get started with Python in your browser.

Learning Curve: Python is generally considered easier to learn for beginners due to its simplicity, while Java is more complex but provides a deeper understanding of how programming works.

Python alone isn't going to get you a job unless you are extremely good at it. Not that you shouldn't learn it: it's a great skill to have since python can pretty much do anything and coding it is fast and easy. It's also a great first programming language according to lots of programmers.

The point is that Java is more complicated to learn than Python. It doesn't matter the order. You will have to do some things in Java that you don't in Python. The general programming skills you learn from using either language will transfer to another.


Read on for tips on how to maximize your learning. In general, it takes around two to six months to learn the fundamentals of Python. But you can learn enough to write your first short program in a matter of minutes. Developing mastery of Python's vast array of libraries can take months or years.


6 Top Tips for Learning Python

  • Choose Your Focus. Python is a versatile language with a wide range of applications, from web development and data analysis to machine learning and artificial intelligence.
  • Practice regularly.
  • Work on real projects.
  • Join a community.
  • Don't rush.
  • Keep iterating.

The following is a step-by-step guide for beginners interested in learning Python using Windows.

  • Set up your development environment.
  • Install Python.
  • Install Visual Studio Code.
  • Install Git (optional)
  • Hello World tutorial for some Python basics.
  • Hello World tutorial for using Python with VS Code.

Best YouTube Channels to Learn Python

  • Corey Schafer.
  • sentdex.
  • Real Python.
  • Clever Programmer.
  • CS Dojo (YK)
  • Programming with Mosh.
  • Tech With Tim.
  • Traversy Media.

Python can be written on any computer or device that has a Python interpreter installed, including desktop computers, servers, tablets, and even smartphones. However, a laptop or desktop computer is often the most convenient and efficient option for coding due to its larger screen, keyboard, and mouse.

Write your first Python programStart by writing a simple Python program, such as a classic "Hello, World!" script. This process will help you understand the syntax and structure of Python code.

  • Google's Python Class.
  • Microsoft's Introduction to Python Course.
  • Introduction to Python Programming by Udemy.
  • Learn Python - Full Course for Beginners by freeCodeCamp.
  • Learn Python 3 From Scratch by Educative.
  • Python for Everybody by Coursera.
  • Learn Python 2 by Codecademy.

  • Understand why you're learning Python. Firstly, it's important to figure out your motivations for wanting to learn Python.
  • Get started with the Python basics.
  • Master intermediate Python concepts.
  • Learn by doing.
  • Build a portfolio of projects.
  • Keep challenging yourself.

Top 5 Python Certifications - Best of 2024
  • PCEP (Certified Entry-level Python Programmer)
  • PCAP (Certified Associate in Python Programmer)
  • PCPP1 & PCPP2 (Certified Professional in Python Programming 1 & 2)
  • Certified Expert in Python Programming (CEPP)
  • Introduction to Programming Using Python by Microsoft.

The average salary for Python Developer is ₹5,55,000 per year in the India. The average additional cash compensation for a Python Developer is within a range from ₹3,000 - ₹1,20,000.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major platforms from the Python website, https://www.python.org/, and may be freely distributed.

If you're looking for a lucrative and in-demand career path, you can't go wrong with Python. As one of the fastest-growing programming languages in the world, Python is an essential tool for businesses of all sizes and industries. Python is one of the most popular programming languages in the world today.

line

Copyrights © 2024 letsupdateskills All rights reserved